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On the Boundary of the Dispersion-Managed Soliton Existence1
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A breathing soliton-like structure in a dispersion-managed optical fiber system is studied. It is proved that, for
negative average dispersion, the breathing soliton is forbidden, provided that the modulus of average dispersion
exceeds a threshold which depends on the soliton amplitude. © 2000 MAIK “Nauka/Interperiodica”.
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1 Propagation of an optical pulse in nonlinear media
with varying dispersion is both a fundamental [1] and
an important applied problem [2–8], because the dis-
persion-managed (DM) system, which is a system with
periodic dispersion variation along an optical fiber, is
one of the most prospective candidates for ultrafast
high-bit-rate optical communication lines. Lossless
propagation of an optical pulse in a DM fiber is
described by a nonlinear Schrödinger equation (NLS)
with periodically varying dispersion d(z):

(1)

where u is the envelope of the optical pulse, z is the
propagation distance, and all quantities are dimension-
less. Consider a two-step periodic dispersion map

d(z) = d0 + , where  = d1 for 0 < z + nL < L1 and

 = d2 for L1 < z + nL < L1 + L2; d0 is the path-aver-
aged dispersion; d1 and d2 are the amplitudes of disper-
sion variation subject to the condition d1L1 + d2L2 = 0;
L ≡ L1 + L2 is the dispersion compensation period; and
n is an arbitrary integer number. Equation (1) also
describes the pulse propagation in a fiber with losses
compensated by periodically placed amplifiers, if the
distance between amplifiers is much less than L.

In a linear regime, in which the nonlinear term in
Eq. (1) is negligible, the periodical variation of disper-
sion is a way to overcome pulse broadening due to
chromatic dispersion, provided that the residual disper-
sion d0 is small enough. However, in a real optical fiber,
the nonlinear term in Eq. (1) is important, because the
optical pulse amplitude should be large enough to get a
high signal/noise ratio. One of the fascinating features
of the DM system is the numerical observation of a
space-breathing soliton-like structure, which is called
the DM soliton, for both positive and negative residual
dispersion d0 [9]. This observation is in sharp contrast

1 This article was submitted by the authors in English.
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with the system described by the NLS with constant
dispersion, where stable soliton propagation is possible
only for positive dispersion [10], because the nonlin-
earity can continuously compensate the positive disper-
sion only. In the DM soliton, the balance between the
nonlinearity and dispersion is achieved, on average,
over the dispersion period L, which lifts the require-
ment for the positive dispersion sign. Nevertheless, it
was never proved that the DM soliton really exists,
because there is a possibility that this is a rather long-
lived quasi-stable breathing pulse which decays in a
long distance z. It is shown here that for negative d0 a
DM soliton can exist only if |d0 | is small enough to
allow nonlinear compensation of pulse broadening due
to the dispersion over distance L.

Equation (1) can be written in the Hamiltonian form
iuz = δH/δu*, where the Hamiltonian

(2)

is an integral of motion on each interval of a constant dis-
persion d(z) = const. Equation (1) is reduced to the usual
NLS on such intervals. At points z = nL and z = nL + L1,
where n is an arbitrary integer number, the Hamiltonian
experiences jumps due to jumps of the dispersion,
although the value of u is a continuous function of z at
these points. In contrast to the Hamiltonian, the time-

averaged optical power N = , or number of par-

ticles in the quantum mechanical interpretation of NLS
(in this interpretation, the coordinate z means some
“time” and actual time t has the meaning of “coordi-
nate”) is an integral of motion for all z. Consider the z

dependence of the quantity A = . A/N is the

average width of a time distribution of u, or simply 〈t2〉
in the quantum mechanical interpretation of NLS.

H z( ) ut
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Using (1) and integrating by parts, one gets for the
first z derivative

(3)

In a similar way after the second differentiation with
respect to z, one gets

(4)

where X ≡ . It follows from Eq. (3), which is

often called the virial theorem (see, e.g., [11, 12]), that
Az experiences finite jumps corresponding to jumps of
a step-wise function d(z):

(5)

Set X(z) = X0 + δX(z), X(0) ≡ X0; then one can integrate
Eq. (4) over the intervals (0, L1), (L1, L):

(6)

where

(7)

are the Hamiltonian values on the intervals (0, L1),
(L1, L) respectively:

Here, the conservation of H1 on interval (0, L1) is used
in deriving the expression for H2.

The DM soliton solution of Eq. (1) (see [13]) is given
by u = (z, t)exp(ikz), where k is an arbitrary real con-
stant and (z + L, t) = (z, t) is a periodic function of z,

(z, t)||t| → ∞  0. Thus, for a DM soliton Az|z = L + 0 =

Az d z( ) 2it uut* u∗ ut–( ) t.d∫=
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Az|z = 0 + 0. This condition can be recast, via Eqs. (5)–(7),
into the form

(8)

The next step is to consider the δX(z) dependence.
Using Eq. (1) and integrating by parts, one can get

(9)

where u ≡ Reiφ, φ and R are real, and R ≥ 0. Consider an
upper bound of Xz, which is given by a chain of inequal-
ities

(10)

where the following inequalities are used:

(11)

(in the last expression, the Cauchy–Schwarz inequal-
ity is also used). Equations (9) and (10) can be
integrated over z to give (it is assumed below that

2 max(L1, L2) < 1)

(12)

In a similar way, using inequality Xz ≥ –4

following from Eq. (9), one can get the lower bound for
X(z):

(13)

For the DM soliton X(L) = X0, and, thus, it is more con-
venient to use similar inequalities for L1 < z < L:

(14)
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Equations (8), (12)–(14) result in the inequality

(15)

Equation (15) is the main result of this paper. Equation
(15) is a consequence of the initial assumption that the
DM soliton exists for given parameters L1, L2, d0, d1, d2
and integral values X0, Y0, N, which depend on u|z = 0
only. Thus, the DM soliton can exist only if this ine-
quality is fulfilled.

Note that if one assumes uniqueness of the DM soli-
ton solution for a given k and soliton width, then, as
shown in [13],  = . In such a case, the

term  in Eq. (8) vanishes and instead of (15),

one can get a more strict inequality. However, this pos-
sibility is disregarded here for the sake of generality.

To clarify the physical consequences of Eq. (15),
consider an optical pulse with a typical amplitude p and
a typical time width t0. Then, N ~ |p |2t0, X0 ~ |p |2/t0 and,

thus, L ~ L/Znl, where Znl = 1/|p |2 is the charac-
teristic nonlinear length. In typical experimental condi-
tions, the nonlinearity is small: L/Znl ! 1, and the
denominators in (15) can be expanded in series to give

(16)

Provided that d0 is negative, both terms on the left-hand
side of Eq. (16) have the same sign and, thus, the right-
hand side should be greater than, or equal to, 2|d0|X0 + Y0.
Assuming d1 @ |d0|, one can get from Eq. (16) the fol-

lowing estimate (Y0 ~ t0/ ):

(17)

Consider the strong dispersion management limit

Zdisp/L ! 1, where Zdisp ≡ /d1 is the typical dispersion
length. This limit implies that the optical pulse experi-
ences strong oscillation at each period L due to the dis-
persion. Then Eq. (17) reduces to

(18)
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i.e., a nonlinearity (amplitude of the optical pulse)
should be strong enough to allow the DM soliton solu-
tion to exist for a given negative d0.

Equation (15) gives the necessary, but not sufficient,
condition for the existence of the DM soliton. In other
words, the violation of inequality (15) means that the
DM soliton is forbidden. Of course, it would be inter-
esting to find to what extent this necessary condition for
existence is close to the sufficient one. In general, this
could be done only if one found the DM soliton analyt-
ically.

Here, one can only mention that there is a qualitative
correspondence between the threshold of DM soliton
existence, following from the analytical condition (15)
and from the numerical investigation of the DM soliton.
Namely, the maximum value of |d0 | (d0 < 0) for which
the DM soliton exists grows with an increase in the dis-
persion map strength L/Zdisp, according to both numer-
ics (see, e.g., [14, 15]) and analytical condition (16). It
also follows from Eq. (18) that for an asymmetric dis-
persion map L1 ≠ L2 the maximum possible value of |d0 |
grows as L1 increases (for fixed L, Znl, d1), in correspon-
dence with Fig. 3 in [15].

Equation (15) also has a clear physical meaning in
another limit d0/d1 @ L/Znl, Zdisp @ L, and Znl @ L, in
which Eq. (15) reduces to

(19)

Equality 2d0X0 = Y0 exactly corresponds to the one-soli-
ton solution of the NLS with dispersion d0 (see [10]),
where the dispersion d0 and the nonlinearity continu-
ously balance each other. Thus, in the limit Zdisp @ L,
which is called a weak dispersion limit, we recover the
usual NLS describing the path-averaged (over the space
period L) DM soliton dynamics, provided d0 is large
enough. A weak dispersion management limit was
studied earlier [1, 16–18]. Note that an additional con-
dition d0/d1 @ L/Znl allows the amplitude d1 of the dis-
persion variation to be much higher still than d0,
because one assumes L ! Znl.

To summarize, the necessary analytical condition
(15) for the existence of the DM soliton is established.
From the physical point of view, this condition means
that the DM soliton solution can exist only if the non-
linearity is strong enough to compensate the pulse
broadening due to the negative value of the average dis-
persion d0. Note that estimates in Eqs. (16)–(19) are
only given here for a physical interpretation of the ana-
lytical condition (15). So far, the DM soliton solution
has been obtained numerically [3, 4, 14] and by the
variational [5] and other perturbative approaches [19–
21]. These results are in agreement with condition (15).
But analytical proof of the existence of the DM soliton
in the parameter region satisfying condition (15), i.e.
the sufficient condition for existence, is still an open
question.

2d0X0 Y0–( ) Y0⁄ O L Zdisp⁄( ) ! 1.=



114 LUSHNIKOV
The author thanks I.R. Gabitov for helpful discus-
sions.

Support was provided by the US Department of
Energy, under contract W-7405-ENG-36, RFBR and
the program of the Russian Government Support for
Leading Scientific Schools.

REFERENCES
1. V. E. Zakharov, in Optical Solitons: Theoretical Chal-

lenges and Industrial Perspectives, Ed. by V. E. Zakharov
and S. Wabnitz (Springer-Verlag, Berlin, 1999), p. 73;
V. E. Zakharov and S. V. Manakov, Pis’ma Zh. Éksp.
Teor. Fiz. 70, 573 (1999) [JETP Lett. 70, 578 (1999)].

2. C. Lin, H. Kogelnik, and L. G. Cohen, Opt. Lett. 5, 476
(1980).

3. M. Nakazawa and H. Kubota, Electron. Lett. 31, 216
(1995).

4. N. J. Smith, F. M. Knox, N. J. Doran, et al., Electron.
Lett. 32, 54 (1996).

5. I. Gabitov and S. K. Turitsyn, Opt. Lett. 21, 327 (1996);
Pis’ma Zh. Éksp. Teor. Fiz. 63, 814 (1996) [JETP Lett.
63, 861 (1996)].

6. S. Kumar and A. Hasegawa, Opt. Lett. 22, 372 (1997).
7. P. V. Mamyshev and N. A. Mamysheva, Opt. Lett. 24,

1454 (1999).
8. L. F. Mollenauer, P. V. Mamyshev, J. Gripp, et al., Opt.

Lett. 25, 704 (2000).
9. J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox,
Electron. Lett. 33, 1726 (1997).

10. V. E. Zakharov and A. B. Shabat, Zh. Éksp. Teor. Fiz. 61,
118 (1971) [Sov. Phys. JETP 34, 62 (1972)].

11. V. E. Zakharov, Zh. Éksp. Teor. Fiz. 62, 1745 (1972)
[Sov. Phys. JETP 35, 908 (1972)].

12. P. M. Lushnikov, Pis’ma Zh. Éksp. Teor. Fiz. 62, 447
(1995) [JETP Lett. 62, 461 (1995)].

13. S. K. Turitsyn, J. H. B. Nijhof, V. K. Mezentsev, and
N. J. Doran, Opt. Lett. 24, 1871 (1999).

14. A. Berntson, N. J. Doran, W. Forysiak, and J. H. B. Nijhof,
Opt. Lett. 23, 900 (1998).

15. A. Berntson, D. Anderson, N. J. Doran, et al., Electron.
Lett. 34, 2054 (1998).

16. A. Hasegawa and Y. Kodama, Solitons in Optical Com-
munications (Oxford Univ. Press, New York, 1995).

17. Yu. L. Lvov and I. R. Gabitov, chao-dyn/9907007
(1999).

18. S. B. Medvedev and S. K. Turitsyn, Pis’ma Zh. Éksp.
Teor. Fiz. 69, 465 (1999) [JETP Lett. 69, 499 (1999)].

19. S. K. Turitsyn and V. K. Mezentsev, Pis’ma Zh. Éksp.
Teor. Fiz. 67, 616 (1998) [JETP Lett. 67, 640 (1998)];
S. K. Turitsyn, Phys. Rev. E 58, 1256 (1998).

20. T. Lakoba and D. J. Kaup, Electron. Lett. 34, 1124
(1998).

21. P. M. Lushnikov, Opt. Lett. 25, 1144 (2000) (in press).
JETP LETTERS      Vol. 72      No. 3      2000


